

Consider the sphere $x^2 + y^2 + z^2 - 4x + 6y + 10z + 29 = 0$.

SCORE: /5 PTS

Find the radius of the sphere.
$$x^2-4y+4$$

[a]

$$x^{2}-4x+4+y^{2}+6y+9+z^{2}+10z+25=-29+4+9+25$$

$$(x-2)^{2}+(y+3)^{2}+(z+5)^{2}=9$$

$$r=\sqrt{9}=3$$

Find the equation of the yz – trace of the sphere, and describe the trace in words. [b]

$$(0-2)^2 + (y+3)^2 + (z+5)^2 = 9$$

 $(y+3)^2 + (z+5)^2 = 50$
(1) CIRCLE, WITH CONTER $(0,-3,-5)$ (2)
RADIUS $\sqrt{5}$ (2)

A parallelepiped has adjacent edges \vec{u} , \vec{v} and \vec{w} . If $\vec{u} = 3\vec{i} + 2\vec{j} - 4\vec{k}$ and $\vec{v} \times \vec{w} = 5\vec{j} + 6\vec{k}$, find the volume of the parallelepiped.

$$|\overrightarrow{U} \cdot (\overrightarrow{V} \times \overrightarrow{W})| = |3(0) + 2(5) - 4(6)| = |-14| = 14$$

/3 PTS

SCORE:

Υ.	D	1 11 1	(5 2 2	\ T	01		(2 2	1) т	D ·		1 2	1 2	1
Let	r	be the point	(-3, -2, 3)). Let	Q be t	ne point	$(\mathfrak{I}, \mathfrak{L},$	-1). Let	Λ	be the point	(-5,	4, -2) .

SCORE: ____/ 19 PTS

[a] the measure of angle RPQ . Give your final answer in degrees, rounded to 1 decimal place.

Find the general form (Ax + By + Cz + D = 0) of the equation of the plane passing through P, Q and R. [b]

$$\overrightarrow{PR} \times \overrightarrow{PQ} = \langle -24 - -20, -(-8 - -40), 8 - 48 \rangle$$

 $\overrightarrow{O} \langle -4, -32, -40 \rangle \rightarrow USE \overrightarrow{D} = -4 \langle -4, -32, -40 \rangle$
 $= \langle 1, 8, 10 \rangle$

1(x-3)+8(y-2)+10(z-1)=0

Find parametric equations of the line passing through
$$R$$
 and parallel to the line $6-x=\frac{z+7}{3}$, $y=-5$.

$$\begin{vmatrix}
X + 8y + 10z - 9 = 0 \\
Y + 3y + 10z - 9 = 0
\end{vmatrix}$$
Find parametric equations of the line passing through R and parallel to the line $6-x=\frac{z+7}{3}$, $y=-5$.

Find a unit vector perpendicular to both PQ and PR. [d]

$$||PR \times PQ|| (PR \times PQ) = ||-4\langle 1, 8, 10\rangle || (-4\langle 1, 8, 10\rangle)| + PROM[b]$$

$$= \frac{1}{4||\langle 1, 8, 10\rangle ||} (-4\langle 1, 8, 10\rangle)| = \frac{1}{165} (-1, -8, -10) = (-165, -8, 165, -2165)$$

$$= \frac{1}{165} (-1, -8, -10) = (-165, -8, 165, -33)$$

Find symmetric equations of the line passing through Q and perpendicular to the plane 9x - 4y + 8 = 0[e]

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$

$$\overline{d} = \langle 9, -4, 0 \rangle \qquad \times -3 = y - 2$$
If a force represented by the vector \overrightarrow{PR} is applied to an object which moves from \overrightarrow{P} to \overrightarrow{Q} , find the weak of the vector \overrightarrow{PR} is applied to an object which moves from \overrightarrow{P} to \overrightarrow{Q} , find the weak of the vector \overrightarrow{PR} is applied to an object which moves from \overrightarrow{P} to \overrightarrow{Q} , find the weak of the vector \overrightarrow{PR} is applied to an object which moves from \overrightarrow{P} to \overrightarrow{Q} .

[f]

Find the area of the triangle with vertices P, Q and R[g]